PREDICTING MARCH MADNESS RESULTS USING A QUANTILE REGRESSION APPROACH Kimberly Mays, advised by Dr. Eliana Cristou University of North Carolina at Charlotte

Introduction

The NCAA Division I Men's Basketball Tournament provides a challenging opportunity to test predictive models:

- Tournament format mostly unchanged since 1985
- Inherent variability of amateur sports
- No perfect bracket to date
- •47 million U.S. bets on the tournament in 2021
- Bracket competitions such as Kaggle's Machine Learning Mania increase interest

Tournament Bracket Design

64 teams divided into 4 regions of 16 teams with 6 single-elimination rounds.

Round 1 pairings based on team seeding with the game seed sum equal to 17 (1 vs. 16, 2 vs. 15, etc.).

Sample region bracket (West region, 2021)

Winning teams advance along the region bracket, with the region winners advancing to Round 5.

Model Comparisons

- Seed: Region seed
- Pomeroy: Pomeroy College Basketball Rankings (kenpom.com)
- Sagarin: Jeff Sagarin's College Basketball Ratings (sagarin.com)
- LRMC: Logistic Regression/Markov Chain (gatech.edu/jsokol/lrmc)
- Massey: Massey composite rank (masseyratings.com)
- RPI: Rating Percentage Index (collegerpi.com)

Methodology

) be a binary response, denoting a team's win or loss in the *i*th round, $i = 1, \ldots, 6$, where 0 represents a loss and Let $Y^{(i)}$ I a win, and X a p-dimensional vector of predictors.

- Goal: Estimate the probability of winning, $P(Y^{(i)} = 1 | \mathbf{X} = \mathbf{x})$, for a specific round $i = 1, \dots, 6$.
- Approach: Estimate $P(Y^{(i)} = 1 | \mathbf{X} = \mathbf{x})$ by averaging over multiple conditional quantiles $Q_{\tau}(Y^{(i)} | \mathbf{X} = \mathbf{x}), \tau \in (0, 1)$.
- Model: Assume $Q_{\tau}(Y^{(i)}|\mathbf{X} = \mathbf{x}) = g_{\tau}(\mathbf{B}_{\tau}^{\top}\mathbf{x})$, where \mathbf{B}_{τ} is a $d_{\tau} \times p$ matrix, $d_{\tau} \leq p$, resulting in new sufficient predictors.

Sample Level Algorithm

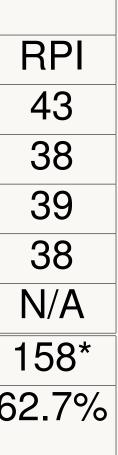
For each tournament round do the following:

- 1. Create a grid of quantile levels. For this work, we use equally spaced quantile levels $\frac{k}{10}$, $k = 1, \dots, 9.$
- 2. Estimate ${f B}_{ au}^{ op}{f x}$ using dimension reduction and form the new sufficient predictors $\widehat{f B}_{ au}^{ op}{f x}$ following the approach of Christou (2020) [1].
- 3. Use a nonparametric technique to estimate the conditional quantile. In this work, we use the local linear conditional quantile regression. This gives $\hat{g}_{\tau}(\mathbf{B}_{\tau}\mathbf{x})$.
- 4. Repeat steps 2 & 3 for the various quantile levels. Estimate $P(Y^{(i)} = 1 | \mathbf{X} = \mathbf{x})$ by averaging over quantile levels using the approach of Hashem et al. (2016) [2].

Once the probabilities are calculated, game pairings are considered. The team with the highest probability is selected as winner and advanced to the next round.

	Single Scoring										
Year	AQR	Seed	Pomeroy	Sagarin	LRMC	Massey	F				
2015	42	44	42	45	41	41					
2016	41	37	39	40	40	39					
2017	45	44	44	46	44	43					
2018	36	36	38	39	40	39					
2019	42	41	44	43	42	41	1				
Total	206	202	207	213	207	203	1				
% of Points	65.4%	64.1%	65.7%	67.6%	65.7%	64.4%	62				

YearAQRSeedPomeroySagarinLRMCMasseyF20159489819273798201610187798293886201714082110113889062018638178111110796201981921279493888Total4794314754924574243% of Points49.9%44.9%49.5%51.2%47.6%44.2%3												
201594898192737920161018779829388201714082110113889020186381781111107920198192127949388NTotal4794314754924574243		Double Scoring										
201610187798293882017140821101138890201863817811111079201981921279493881Total4794314754924574243	Year	AQR	Seed	Pomeroy	Sagarin	LRMC	Massey	F				
2017140821101138890201863817811111079201981921279493881Total4794314754924574243	2015	94	89	81	92	73	79					
201863817811111079201981921279493881Total4794314754924574243	2016	101	87	79	82	93	88					
2019 81 92 127 94 93 88 1 Total 479 431 475 492 457 424 3	2017	140	82	110	113	88	90					
Total 479 431 475 492 457 424 3	2018	63	81	78	111	110	79					
	2019	81	92	127	94	93	88	1				
% of Points 49.9% 44.9% 49.5% 51.2% 47.6% 44.2% 39	Total	479	431	475	492	457	424	3				
	% of Points	49.9%	44.9%	49.5%	51.2%	47.6%	44.2%	36				



RPI 88 73 61 84 N/A 306* 89.8% Predictions were scored against actual tournament results in both single and double methods to follow standard March Madness bracket scoring:

- 1. Single scoring: 1 point for every correct game prediction (max = 63)
- 2. Double scoring: the value of correct predictions double for each round, giving greater weight to end-of-tournament predictions (max = 192)

*Note: RPI (Rating Percentage Index) was discontinued after the 2017-18 season but was a common benchmark metric for seasons prior to 2018-19.

Except tournament seed, all predictors represent the season-wide averages:

- 1. region seed
- 2.3 pointers per game
- 3. field goals per game
- 4. free throw attempts per game
- 5. free throws per 100 possessions
- 6. offensive rebound percentage
- 7. offensive rebounds per game

Discussion

References

[1] Christou, E. (2020). Central quantile subspace. Statistics and Computing, 30, 677-695.

[2] Hashem, H., Vinciotti, V., Alhamzawi, R., & Yu, K. (2016). Quantile regression with group lasso for classification. Advanced in Data Analysis and *Classification*, 10, 375-390.

Acknowledgements

Special thanks to the authors of Hashem et al. (2016) for use of their code.

Data & Predictors

- 8. defensive rebound percentage
- 9. defensive rebounds per game
- 10. assists per game
- 11. fouls per game
- 12. scoring margin
- 13. assist to turnover ratio
- 14. offensive efficiency
- 15. defensive efficiency

 Sagarin had the best performance overall for both single and double scoring; however, the ratings use proprietary metrics.

• Our method uses only freely-available game data and was the best 3 of the 5 years and 1 of the 5 in double and single scoring respectively.

• Of the remaining methods, Pomeroy was the top method 1 year in both scoring methods; Massey, RPI, and seed rankings never earned the highest score. 2018 was the only tournament to date where a #1

seed team lost in the first round.

 Algorithm easily adapts to other "successes": covering the spread, upsets by seed, etc.