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Introduction

• Quantile regression has received a considerable amount of attention as a
means of capturing a more complete picture of the conditional distribution
of a response and the predictors. However, this extra information can
become a hindrance when working with high dimensional data, making
dimension reduction techniques particularly useful.
The ability to condense the number of predictors needed–while still retain-
ing all relevant information of the relationship between the independent and
dependent variables–allows for increased accuracy, efficiency and decreased
computational costs.

Central Quantile Subspace

• In one of the most frequently cited papers on dimension reduction, Li
[4] coined the central subspace (CS). The CS is the smallest dimension re-
duction subspace, defined as the column space of any matrix A such that
Y ⊥⊥ X|ATX. However, this describes the entire conditional distribu-
tion. When only certain relationships are of interest, the CS provides more
directions than necessary.
• Christou [3] introduces the τ -th central quantile subspace (CQS). For
τ ∈ [0, 1] and any matrix Bτ , a τ -th central quantile subspace is the space
spanned by the columns of
Bτ such that Y ⊥⊥ Qτ (Y |X)|BτTX (1)
• To describe the intersection of all the τ -th quantile dimension reduc-
tion subspaces, the CQS provides only the pertinent directions allowing for
better dimension reduction. To estimate the CQS, a non-iterative linear
algorithm is developed. However, by focusing on only the linear combina-
tions of the predictor matrix X, many important nonlinear features of the
data are overlooked.
Therefore, a nonlinear extension of this algorithm is desirable.

The Kernel Method

• To construct the nonlinear CQS, we utilize the ”kernel-trick”. When trying
to separate data that is not linearly separable in the input space, in some
instances transforming it into a higher dimensional feature space transforms
the data cloud, permitting linear separation. This is the essence of the
”kernel-trick” and it’s important implication: applying a linear algorithm
in the feature space corresponds to a nonlinear algorithm in the original
space.
• To generalize the algorithm, the linear estimator of (1) BτT (X) is re-
placed with the nonlinear Ψτ (X) under the same assumptions. Following
the kernel sliced inverse regression methods of [5] and [2], we map the in-
put space χ ⊂ Rp to the reproducing kernel Hilbert space generated by a
positive-definite kernel K, HK
• Since the feature space K(X,·) and the feature τ -CQS directions are in
high dimensional space, a finite basis is used to estimate the parameters,
the process is discussed in further detail in [1]. At the sample level, let
{Yi,Xi}ni=1 be iid observations. Once the kernel matrix {K(Xi,Xj)}ni,j=1

and the new predictors Ti = (K(Xi,X1), ..., K(Xi,Xn))T have been
formed, we apply the algorithm of [3] to the data {Yi,Ti}ni=1 to obtain
an estimated basis matrix for the feature τ -CQS. From this basis matrix
we can form the new feature τ -CQS predictors and use existing QR tech-
niques to estimate the conditional quantile function.

Data Visualization

To illustrate the performance of the feature τ -CQS, denoted by kernel CQS (KCQS)
in the plots, we apply the methodology to the following real world data sets:
• Ionosphere containing information on radar returns collected by Johns Hopkins
University. The dependent variable of interests labels ”good” or ”bad” radar returns,
with the other 34 variables describing the discrete values of the real and imaginary
parts of an ACF.
• The Heart dataset contains 76 attributes, though traditionally a subset of 14 is
used, predicting the presence of heart disease in a patient. The response is integer
valued 0 to 4 where 0 is the absence of heart disease.
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Fig. 1: Visualization of Ionosphere data set
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Fig. 2: Visualization of Heart data set

Results

• To demonstrate the ability of a low-dimensional subspace in capturing
the main data structure, we use a training set to extract the linear and
feature τ -CQS sufficient dimension reduction directions. Then, the first
two directions are plotted using a test set, where the data is split into 1/3
and 2/3 subsets for training and testing, respectively.
• Figure 1 showcases the capabilities of the methodology for data where
the linear algorithm in the input space performed satisfactory. However,
there is clearly a better defined pattern for the K-CQS.
• From Figure 2, we can see the nonlinear algorithm performs well even
when there is a significant amount of overlap between classes.
• We can see the reduced nonlinear variables derived from the feature τ -
CQS are better able to distinctly separate the data in the two-dimensional
subspace compared to the τ -CQS of [3].

Conclusion

• Building on the work of [3], we extend the linear algorithm for esti-
mating the τ -CQS utilizing the ”kernel-trick”, wherein applying the linear
algorithm in the feature space corresponds to a nonlinear algorithm in the
input space.
• Real data application, specifically data visualization, highlight the abil-
ity of the feature τ -CQS to extract the sufficient dimension reduction
directions and capture the data in a low-dimensional space.
• Similarly, the feature τ -CQS performance demonstrates the ability of
the methodology and nonlinear dimension reduction techniques to better
describe the conditional quantiles of modern data.
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